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Robertson-Walker universe 
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Republic of Germany 
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Abstract. Creaction of massive spin-4 particles in a 3-flat Robertson-Walker universe 
with expansion law R - tl’* (radiation dominated universe) is studied with Fock space 
methods. The universe is thereby completed in ‘passing through the singularity’ by a 
time-symmetric (mirror-like) contracting universe preceding the singularity. The respec- 
tive procedure to d o  so for Dirac test fields (conformal method) is discussed in detail. For 
the asymptotic in- and out-regions a WKB particle interpretation is applied. It is found that 
particles are created with a non-relativistic thermal spectrum. The expressions for the 
number density, energy density and pressure of the created particles confirm this result 
(equation of state). The study of the development in time of the creation process shows 
that 99% of the particles created all together are created at about the Compton time. 

1. Introduction 

The main result of quantum field theory in curved space-time is that it leads to the 
creation of particles by strong gravitational fields. A variety of problems related 
herewith has been discussed during recent years mainly with respect to the gravita- 
tional fields represented by cosmological and black hole space-times. For a survey of 
the literature till 1975 we refer to De Witt (1975) and Parker (1977). 

In this paper we are concerned with the creation of massive spin-; particles caused 
by the expansion of an open spatially flat Robertson-Walker universe with expansion 
law R - t l ’ * ,  which is that of a radiation dominated cosmology. In particular we are 
interested in the probability distribution, the average number density, the energy 
density, the pressure and the entropy of the created particles. Throughout the 
calculation the cosmological model will thereby be taken as a given underlying 
classical space-time which is otherwise determined and which is not modified by the 
created particles. Accordingly quantum fluctuations of the metric are excluded and 
the back-reaction of the created matter on the expansion is neglected. Furthermore, 
we will trace the history of our universe back to the states of infinite density and 
beyond that to the earlier states with finite density in the contracting ‘mirror-like’ 
universe before. 

These simplifying assumptions have to be kept in mind when the results of this 
paper and those of similar calculations are used to discuss the ‘true’ cosmological 
situation during the first second of the universe. We have the disadvantage of the 
discussion of a highly idealised situation which on the other hand implies the advan- 
tage of rigorous results. Cosmology as part of astrophysics is the discussion of a highly 
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complex situation. But this discussion is based on results of ‘pure cases’. So that in 
this sense the results of quantum field theory in given cosmological space-times can be 
of fundamental cosmological importance. 

Particle creation in Robertson-Walker universes has been studied by several 
authors. The respective treatments mainly differ in the choice of the particle wave 
equation, in the definition of the vacuum and in the way the Einstein expansion law 
R(t)  with singularity is changed. Parker (1971) modifies R(t)- t”2 by assuming that 
R(t)  approaches a constant value for t s O  and t 3 t 2 .  He then obtains for Dirac 
particles that the density of all created particles is finite. Mamaev et a1 (1976) study 
bosons in a Friedman universe with R - t4 ,  0 < q < 1 and define the vacuum state at 
any time t as well as t = 0, by instantaneous diagonalisation of the energy-momentum 
tensor and time-dependent normal ordering?. The most interesting result with regard 
to our calculations is that the virtual particles in the vacuum are obtained with a 
thermal spectrum, while this is not the case for the created real particles. Parker 
(1976) studies massless minimally coupled spin-0 particles and the expansion law 
R - t”2  which is modified at about the Planck time in joining it to a constant value of 
R.  He obtains approximately a black-body distribution for the created particles. It is 
not yet clear how this result depends on the modification of the R - t”2  law at early 
times. Chitre and Hartle (1977) define for conformally coupled massive bosons and 
expansion law R - t an initial vacuum state at the singularity in applying a path 
integral formulation. This is equivalent to imposing certain boundary conditions at 
the singularity. But there is no physical interpretation of these conditions. Further- 
more for a behaviour R - t4,  0 < q s 1 at t = 0, only q = 1 implies that the conformal 
transformation of the time-coordinate t + 7, relating to Minkowski space-time, trans- 
forms the singularity at t = 0 to 7 = --CO. The spectrum of produced particles in Chitre 
and Hartle (1977) becomes a thermal spectrum for high energies. 

In contrast to the approaches above we pass through the big bang singularity into a 
‘mirror-like’ contracting universe and obtain for spin-; particles and an unmodified 
expansion law R - t1 I2  a thermal spectrum for all energies. For the asymptotic in- and 
out-region a WKB particle interpretation is applied. 

In D 2 a conformal method of passing through the singularity is specified for Dirac 
test fields. In 8 3 our particle concept is stated explicitly. The exact Dirac solutions 
obtained in § 4 are the starting point for a Fock space formulation in § 5 ,  which leads 
to a thermal spectrum for the created particles. In § 6 the development in time of the 
creation process which takes place near the Compton time is studied in detail. As 
shown in § 7 the equation of state for energy density and pressure of the created 
particles confirms the thermal spectrum. The appendix contains the essential facts of 
the WKB theory of Dirac particles in curved space-time. In the remaining part of the 
introduction the space-time is specified and a simple heuristic discussion anticipating 
the main results is given. 

1.1. Cosmological model 

As the cosmological background space-time by which particle creation is caused, we 
take the 3-flat Robertson-Walker geometry (c  = 1) 

ds2 = dt2 - R2(t)(dx2 + dy2 + dz2) (1.la) 

f For Dirac particles the same method leads to divergent results for energy density and pressure (Schafer 
and Dehnen 1977). 
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or 
ds2 = R2(q)(dv2 - dX2 - dy2 - dz2). ( l . l b )  

As the expansion law we use that of a radiation-dominated universe, which proves to 
be a good description of the early stages of the universe, when particle creation is to be 
expected: 

R = at‘” = 6773 b = a 2 / 2 ,  a = constant > 0. (1.2) 
All statements refer to the observers moving along the preferred geodesics x = y = z = 
constant (word lines of galaxies) and measuring f as proper time. They will be called 
cosmic observers. 

This universe is characterised by having a ‘big bang’ and a singularity at t = 77 = 0 
followed by decreasing velocity of expansion for 77 > 0 and an asymptotic passage to a 
universe with vanishing Hubble parameter for 77 + +CO. It is an essential point for the 
following considerations, that we complete this space-time to negative 77 passing 
through the curvature singularity at 77 = 0 in using the law R ( 7 )  of (1 .2)  for -a < 77 < 
0 as well. This means, we in fact use a space-time which has an asymptotically 
vanishing Hubble parameter for 77 = -CO, contracts for -a < 77 < 0 towards a 
singularity at 7 = 0 and expands for 0 < 77 < +CO. This contraction-expansion law 
represents, apart from 77 = 0, for all 7 a solution of the Einstein equation for a 
radiation-filled universe. 

Our justification for the completion of the universe by a sort of ‘image universe’ 
preceding the singularity is the following. There is no unambiguous way of introduc- 
ing a particle interpretation in highly curved space-times because there are objections 
to a particle definition based on an instantaneous diagonalisation of the Hamiltonian. 
On the other hand, particle definition based on a WKB approximation needs a region 
of slow expansion or contraction (adiabatic region). To have such a region for the 
ingoing and outgoing particle states without changing the dynamics of the universe at 
early times (singularity) and without abandoning Einstein’s equation, we need the 
expansion law (1.2) for negative values of 77 as well. Furthermore this is the limiting 
case of the universe with aisoided singularity and a time-symmetric contraction- 
expansion law. 

1.2. Heuristic discussion 

Leaving aside details, a heuristic discussion of the essential facts of particle creation in 
Robertson-Walker universes leading to order of magnitude estimates can be given. 

In a metric theory of gravitation in which gravitation is replaced by space-time 
curvature, the gravitational forces ‘survive’ as tidal forces between particles. These 
forces therefore should be responsible for the corresponding particle creation. The 
respective relative acceleration of two test particles is caused by the curvature of 
space-time. It is of the form (symbolically written equation of geodesic deviation) 
6x / r2  where 6 x  represents the infinitesimal distance of the particles and r-* is given by 
the components of the Riemann tensor. For the universe (1.1) in question we have 

l / r 2 - R t 2 / R 2  and l / r2 - -R“ /R  (1.3) 
(differentiation with respect to t )  where the greater expression has to be taken, We 
restrict to expansion laws 

R = atq, O < q < l  
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which imply 

R t 2 / R 2  = q 2 / t 2 ,  R"/R = ( q 2 - q ) / t 2 .  (1.5) 

In this geometry the test particles experience an acceleration towards each other. 
Following Woodhouse (1977) we may say that a particle-antiparticle pair which is 

separated by a distance Sx can gain from the tidal forces the energy m(Sx/r2)Sx. If 
this energy reaches the order of the rest mass, the particles can become real 

m (ax 
r 

Z m .  

On the other hand, the distance Sx over which virtual particles can spread is limited by 
the uncertainty relations A E  At - 1, ( A  = 1). For the creation of a pair of particles an 
uncertainty A E  5: m of the energy is needed which is only possible for a time At 5 m-'. 
The virtual particles can therefore not last longer than m-', accordingly they can not 
propagate further than about m-l and the extension of a cloud of virtual particles is 
about x S A c  = m-l with Compton wavelength Ac. Thus with (1.6): r s A c .  For the 
expansion law (1.5) with r - t we finally obtain t 5 m-'= tc. It is only before and up to 
the Compton time 

(m is the electron mass) that a significant pair production occurs. 
To take into account heuristically the production of particles which apart from 

their rest mass possess a small amount of kinetic energy, the right side of (1.6) is to be 
corrected 

Accordingly a 'quantum mechanical separation' of the virtual particles over more 
than a Compton wavelength is necessary. The prt bability for finding particles 
separated by a distance Sx decays exponentially (Henley and Thirring 1962): 
exp(-mx). With (1.8) the probability for the creation of particles with momentum p is 
proportional to 

exp[-(mr+a2 rp2/m)] with a 2 5  1. 

In Robertson-Walker universes p diminishes according to p = k/R with k = constant. 
The probability is therefore proportional to 

rk 
exp - a 2 7  . ( R m )  (1.9) 

The appearance of the exponential function in (1.9) suggests the conjecture that the 
spectrum of the created particles could be a non-relativistic thermal one. The neces- 
sary condition for this is that the argument of the exponential function is independent 
of time and proportional to k 2  because in this case it is of the approximate form 
(-p2/mT) with p 2 -  1/R2 and temperature T -  R2.  

Comparison of (1.9) with (1.3) and (1.5) shows that this is only the case for q =$. 
We therefore have that in the momentum spectrum of the created particles there 
appears an exponential function with an argument proportional to k 2  or p 2 .  But only 
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in the case of the expansion law R - t"* can this be taken as a hint that the particles 
are created with a thermal spectrum, which is then proportional to 

(1.10) 

The heuristic discussion above should not be overestimated. It suggests that some 
conjectures may be reasonable. Only the calculations in the following sections will 
finally confirm that for R - t"' particles are created, thet this mainly happens at about 
the Compton time and that their spectrum is a thermal one. 

2. Dirac theory and conformal method 

In this section we briefly review some elements of the generally covariant Dirac theory 
and specialise to our space-time where the domain of negative 77 needs additional 
considerations. 

2.1. Dirac theory 

With respect to an orthonormal tetrad field? h z ( x )  

the Dirac equation in curved space-time takes the form 

The Dirac current j" defined by means of @ = 9'~'~' is divergence-free: 

j" = q y " 9  = @ h z y a 9 ,  j",I" = 0. (2.4) 

This enables a hypersurface-independent normalisation on a hypersurface U with 
time-like normal vector ua  using the integral (where d3V is the invariant volume 
element of U) 

I, j"u, d3 V. 

t h = 1, c = 1. Signature of the metric tensor gag: (- - - +). Ila denotes the covariant and /a the partial 
derivative. a, 0,. . . = 1,. . . , 4  and & b , .  . . = 1, 2 . 3  are tensor indices raised and lowered with gag. 
a, b , .  . . =  1 , .  . . , 4  and a ^ , & , .  . . =  1 , 2 , 3 ,  are tetrad indices raised and lowered with T),,, = 

diag(-1, -1, -1, + l ) .  The corresponding geometrical object is a Riemannian scalar with regard to a, b, . , . 
M(ag)=+(Mag + ~ , a )  

~ ( l ) = ~ a = l  M' =Ma=' 

Standard yomatrices as in Bjorken and Drell (1964) 
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The symmetric divergence-free energy-momentum tensor is given by 

2.2. Conformal method 

Our space-time with metric (1.1) is characterised by having a singularity at t = 7 = 0. 
As stated above our intention is, going backwards in time, to pass through the 
singularity into a space-time with metric (1.lb) where 7 < O .  Up to now there is no 
canonical method to do so with a quantum mechanical test field. We will introduce a 
procedure which could be characterised as a conformal method. It generalises consi- 
derations of Audretsch and Schafer (1977). 

For 7 > 0 our physical problem can be mapped into a completely equivalent 
problem which is formulated by means of a modified Dirac equation with regard to a 
conformally related metric. To do so we take the same manifold, the same coordinate 
system (x, y, z ,  7) as in ( l ' lb ) ,  refer to the same observer convergence ( x  = const, 
y = const, z = const) but introduce into the manifold instead of the metric gap of ( l . l b )  
the conformally related Minkowski metric gTp 

gap = R2g% (2.7) 

hz = Rh:. (2.8) 

and correspondingly a tetrad field - 
For a given congruence of world lines of particles in the underlying manifold describ- 
ing a particle or charge flow, the corresponding currents are related according to 
(compare Audretsch and Schafer 1977) - 

j" = R4jae (2.9) 
Because of (2.4), (2.7) and (2.8) this implies that Dirac fields in the two space-times 
are to be connected by 

(2.10) @ = R 3/2+, @* = 3/2*+ 

where we have written @ instead of q. 9 is the solution of the Dirac equation (2.2) 
evaluated with gap and hz. Adjusting the tetrads along the coordinate lines 

- 
hz = S z  (2.1 1) 

iSzya9Ia + i?(R/R)y4Q-Rm9= 0. (2.12) 

1 
R a '  

hz = -8" 

this Dirac equation takes the form 
0 

The corresponding equation for @ is, because of (2.10), 

iSzy"@la - Rm@ = 0. (2.13) 

With the tangent vector to the observer world lines 

1 
A u a  =-a,", U'" = a:, A = R  (2.14) 
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the normalisation with respect to the q = const hypersurface takes the form 

@'@ dx dy dz = 1 

where we have used 

A = R .  3 5 -  d 3 V = A  d V = A 3 d x  dy dz, 

This implies for the scalar product of the @: 

(alr = 5, @.:a2 dx dy dz. 

1589 

(2.15) 

(2.16) 

(2.17) 

After some calculation starting from (2.6) and using (2,11), (2.10), (2.14) and (2.16) 
we obtain for the energy as seen by the cosmic observer u a  

A i  A 
R 2  2R 

T0pu 'U' d3 V = 7 -(@+a14 + @b@) dx dy dz = ~ ( @ ' f i @  - (fi@)'@) dx dy dz 

(2.18) 
with 

(2.19) 

Summarising, we may say that for q > 0 our physical problem which refers to the 
space-time with metric g a p  and which is characterised by T U P ,  j " ,  U" and by the field 
equation (2.12) for 9 is mapped into a completely equivalent problem which refers to 
the space-time with metric gyo (Minkowski space-time) and which is characterised by 
H,j", U" and by the field equations (2.13) for the field @ containing a time-dependent 
potential. Note that for the latter Minkowski space-time problem there is no singular 
behaviour at the hypersurface q = O  where R(q = O ) =  0. So we may continue the 
Dirac equation analytically into the domain q S O  in using all expressions with tilde 
and the law R = b~ of (1.2) everywhere. This then defines the equivalent physical 
problem for all values of 7). When going back for q < 0 to the original problem, one 
has to use A = I T /  in order to have future-pointing observer velocity in (2.14) and a 
positive volume element in (2.16). 

In a strict sense a 'passage through the singularity' is impossible in the framework 
of classical general relativity. Singular points are not a part of the manifold. To 
establish nevertheless for test fields and test particles a connection with the world 
before the big bang, an additional procedure generalising the theory is needed. This 
will necessarily show features which are ad hoc, although the procedure itself may 
seem natural. In the remainder of this section we want to discuss these features more 
precisely. The guiding physical idea is that the singularity at q = 0 will not occur in a 
more realistic universe and that in this case for q < 0 the universe will be completed by 
a mirror-like universe. The occurrence of a singularity at q = 0 is then the limiting 
case of this situation. Its study is the subject of this paper. It is of importance 
especially if one wants to answer the question in which way the singularity itself is 
responsible for the particle creation. In the following it is to be kept in mind that we 
are discussing quantum mechanics in a given, i.e. otherwise determined, space-time 
by means of test fields. It is only the physics of these test fields which is extended 
beyond q = 0. The features with a certain ad hoc character are: 

a- - 
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(i) We join two identical space-times (A1, gl) and (A2, gz) with metrics g1 and gz 
mirror-like together. (A2, g2) is thereby the Robertson-Walker universe in question. 

(ii) The two space-times have a scalar singularity at t = q = 0 (for further details 
see Hawking and Ellis (1973) and Ellis and Schmidt (1977)). It is a matter singularity, 
i.e. it is caused by the Ricci tensor, and not a conformal singularity. This is related to 
the fact that the singularity can be avoided €or a presumably more physical matter 
content of the universe. Because the singularity is no conformal singularity, it is 
posible to go over to the conformally related space-times (Al, E) and (Az, E) which 
may have a regular boundary at the place of the scalar singularity. In our case (Al, E )  
and (&,E) both are a half Minkowski space-time. It is important now that it is 
possible to formulate in (Ai,g) (i = 1,2)  by means of correspondingly altered field 
equations for the Dirac test field a physical problem which is completely equivalent to 
the original one in (Ai, gi). Furthermore, because the boundary points of the ( 4  E) 
are regular, it is mathematically and physically trivial to join them together. With 
regard to the equivalent physical problem for the Diract test field, the only new fact 
then is that now initial conditions specified in (Al, E) or (.Adl, gl) will influence the 
physics of the Dirac field in (Az, E) and therefore (.U,, g2). 

(iii) Finally, because the theory of spin-; fields is formulated by means of a tetrad 
field instead of the metric only, it needs a further specification. In our case, the 
concept 'mirror-like' of (i) for q < 0 could as well be realised by using IR 1 instead of 
R CO. We choose the latter to obtain an analytical behaviour for equation (2.13). 

The point (ii) characterises the conformal method itself. The other points contain 
additional reasonable assumptions. We mention that the whole procedure above 
could as well be interpreted in a restricting sense as a method defining initial condi- 
tions for the spin-; field in the space-time (Az, gz) only. 

In a subsequent paper we will treat the creation of Klein-Gordon particles in a 
time-symmetric universe without singularity which approaches for 7 > 0 the space- 
time (&, g2) of this paper as a limiting case in the sense discussed above. 

3. Particle concept 

For the definition of particles we will use a generally covariant approach, which is 
based on solutions of the WKB equation in the respective space-time. 

Definition. If at a time 770 (or asymptotically) a system of WKB solutions is (i) complete 
with respect to the Dirac norm and (ii) fulfills the dynamical field equation, i.e. is also a 
solution of the Dirac equation, it describes at the respective point of time qo (or 
asymptotically) particles. 

We mention that by (ii) the usually required condition that 'the Dirac solutions 
should approach WKB solutions' in order that a particle interpretation is possible, is 
specified in a rather strict sense because a demand concerning the derivative is 
included. Condition (ii) is necessary because only the Dirac equation describes Dirac 
particles. According to the definition above a particle interpretation can only be 
introduced for times q o  when for all modes no particle creation or annihilation takes 
place. For a Dirac solution 
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condition (ii) implies at qo 

As shown in the appendix in our space-time a particle interpretation and correspond- 
ingly the introduction of a vacuum state is only possible at q = *CO. Condition (ii) is 
not fulfilled at q = 0. 

4. Exact solutions 

From the Dirac equation (2.3) 

(i-yaa, - mR(q))(D = 0, a, = { a x ,  ay, a,, a,} (4.1) 

we go over by the substitution 

(D = (-i-yaaa - Rm)r$ 

[-qabaaab +iy'4'Rm -R2m2]r$ = 0 

r$ = f ( q ) r  exp(-ik&x') (4.4) 

y(4)r = Er, .S=fl .  (4.5) 

(4.2) 

to the squared equation 

(4.3) 

where the dot denotes differentiation with respect to q. We solve (4.3) with the ansatz 

where the constant spinor r is defined by 

For the standard representation of the y a  (Bjorken and Drell 1964) r becomes 

and (4.3) reduces to a differential equation for f(q): 

f+ (R2m2 - iemR + k2)f = 0. (4.7) 

If we now specialise to the expansion law R = bq of the radiation-filled universe 
we obtain the differential equation for parabolic cylinder functions: 

where 

v = ~ [ - + + E -  +(ik2/bm)-11 

t = *(I + -i>./(bm)q 
(4.9) 

(4.10) 
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( 4 . 1 1 ~ )  

(4.11b) 

For a fundamental system it is sufficient to restrict to the upper sign in (4.11). 
To obtain @ we have to return to (4.2). When applying the corresponding 

operator to (4.1 l a )  and (4.11 b) we make use of 

a 
az 
-D,(z)= -$zD,(z)+ V D y - 1 ( Z )  (4.12) 

and 

a 
-D,(z) = $zD,(z)-D,+1(z) (4.13) 
a2 

respectively. After normalisation this finally leads to the solutions 

i @ k , s ( x )  = exp -- - [(27r) k 1 3 2 -1/2 
eXP(*ikaXdXUsDik2/2bm[*(1 - i ) d ( b m ) ~ ]  ( ; b 9  

(4.14a) k2 
2bm + ( I  -i)J(bm)-u^sD(ik2/26m)-1 [*(I -i)J(bm)TI) 

‘ 0  0 

-kl -ik2 

( 4 . 1 5 ~ )  

(4.15b) 

Thereby the (upper, lower) sign at @ corresponds to the (upper, lower) sign at the right 
side of the equation. The upper signs in ( 4 . 1 4 ~ )  and (4.14b) represent together for all 
7 a complete orthonormal system. the same is true for the lower sign. For E = -1 the 
same result follows; we can therefore restrict to E = + 1. 

An interpretation of the solutions above is based on the considerations in the 
appendix concerning WKB solutions: the action S is of the form 

(4.16) 

t To indicate that the two choices of the signs are independent we write (*) and (+ -) 



Thermal particle production in a R w universe 1593 

and shows for 17 I + 00 the asymptotic behaviour 

S + - - ? j ~ / ~ - k r i x  bm ri * 

2 
(4.17) 

Therefore with the energy-momentum tensor (A. 15) we have asymptotically the 
following correspondence in the sense of § 3: 

Q, = eis  c, positive energy t) particle 

Q, = e-iS t, negative energy t, antiparticle. 
(4.18) 

On the other hand, the asymptotic behaviour of the parabolic cylinder functions 

for l a r g z l < 3 ~ / 4  ( 4 . 1 9 ~ )  

D , ( z ) s e  z e z  for ~ / 4  < arg z < 5 ~ / 4  (4.196) 

implies according to ( 4 . 1 9 ~ )  and (4.14) the interpretation 

for / z I  + with finite index v 
-.?2/4z U D , ( z ) l e  

- z 2 / 4  Y J(2T) - imv +22/4 -“-I 

r(-v) e 

+ -cc 
?-/++cc + Q , k ]  particle with momentum + k  at 

+ @ k  

?./+-cc 
7++m 

I O k ]  antiparticle with momentum - k  at 
@ k  

(4.20) 

where on the right side of (4.14) the upper or lower sign is correspondingly chosen. 
Because of (4.196) the remaining choices for the sign do not correspond to an 
asymptotic WKB behaviour. 

5. Thermal distribution of created particles 

To determine the momentum spectrum of possibly created particles we go over to 
quantum field theory in a Fock space formulation by introducing particle creation and 
annihilation operators. We decompose the now quantised field @ according to 

(5.lb) 

where the operators obey the anticommutation relations 

[a?,, a,7:.1+ = [b?,, b;*:,,]+ = S(k - k ’ ) S , , .  ( 5 . 2 )  

and the in-vacuum is defined at 77 = -cc by 
in 

a k . s  I F a J  = bzs I Fac) = 0 
(in [ in  ) = 1 

vac vac . 
( 5 . 3 ~ )  

(5.3b) 

The corresponding relations apply for out-operators and the out-vacuum at 7 = +cc 
(the other anticommutators vanish). The mean value N k , s  of the out-particles of the 
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mode (k, s )  wich are generated out of the in-vacuum is given by 

(5.4) out t out in 
f ik , s  = ($c I (0 k, s) a k.s I vac). 

Using (5.2) and the orthonormality relation of the q k , s  we obtain from (5 .1)  

( 5 . 5 )  

(5.6) 

3 +  t 
0::; = ( 2 ~ r ) ~ ~ & : , , + & k , ~ a ~ ~  + (277) &k,s-&k,s(bck,-s)t 

3-  t 3-  t (b:?,-~)~ = (277) &k,s+&k,saks  +(277) &k,s-&k,s(bek,-s)t 

with 

L@k,s (x) = exP(*ikix’);&k,s(q). (5.7) 

Because of (4.14) we have 

(5 .8 )  3c t (277) &k,s+&k,s = -i/Mz2,s 

and correspondingly 

(277)3 -&L,s-&k,s = i/Mk2,s (5.9) 

(5.10) 

Furthermore with 

( M p , s ( 2 =  [ l  -exp(-~rk~/bm)]-’ (5.11) 

and using (5.2), (5.5) and (5.6) we find 

l(277) 3 t  &k,s-&k,s12 t = exp(-rk2/bm) 

[(277) 3-  @k,s+d)k,slz t = exp(-rk2/bm). 

(5.12) 

(5.13) 

This finally implies with (5.4): 

Nk,s = exp(-lrk2/bm)S3(k - k). (5.14) 

The same result can be obtained for antiparticles, so that the final expression for the 
total number of particles and antiparticles together created in the mode (k, s)  is given 
by 

(5.15) fit;’ = 2 exp(-.rrk2/bm)S3(k - k)  

Additionally, using the ‘golden rule’ 

(5.16) 

and summing up spin indices we obtain as total number of particles generated per unit 
coordinate volume with momentum out of the interval [k, k + d k ] t  

z (5.17) 

t The quantum mechanical probability interpretation which is based on repeated measurements does not 
contradict the fact that there is only one universe and one cosmic evolution, because these repeated 
measurements can be done in different finite volumes. 
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Referring to the volume as measured by the cosmic observer, the total number of 
particles Ntota' which are created per unit volume element with arbitrary momentum 
and arbitrary direction of spin is given by ( V  = R 3 Z )  

(5 .18 )  

It follows from (5 .14 )  that the particles are created with a non-relativistic thermal 
spectrum with vanishing chemical potential (Maxwell-Boltzmann distribution). Note 
that all considerations above are concerned with asymptotic out-states. Because of the 
time dependence p ( t )  = k / R ( t )  of the momentum the particles are then non-relativis- 
tic, and the argument of the exponential function in (5 .14)  represents the quotient of 
kinetic energy and temperature T both as measured by the cosmic observer: 

T = b/2rrR2kB (5 .19)  

where k s  is Boltzmann's constant. To obtain (5 .19 )  one has to use the single-particle 
energy p 2 / 2 m  instead of the kinetic energy of the pair, because the gas of particles 
and antiparticles does not react in later thermodynamical interactions in finite 
volumes as if it is composed out of correlated pairs. With (1 .2 )  and introducing 

(5 .20 )  

which may be called the Compton temperature, the particle temperature T takes the 
form 

(5 .21 )  

where H = R / R  is the Hubble parameter. 

vanishes, the entropy density per coordinate volume is given by 
Because the chemical potential of the non-relativistic thermal particle distribution 

S/I; = 4 k & 2 7 ~ / m k ~ T ) - ~ / ~  (5 .22 )  

which is according to (5 .19)  

S/Z = fkgNto ia ' /Z .  (5 .23 )  

It remains constant during the expansion of the universe. 
For the case of cosmological models with an event horizon, it has recently been 

shown by Gibbons and Hawking (1977)  that an observer on a geodesic will find a 
background of thermal radiation coming from the event horizon. Because there is no 
event horizon in the space-time which we are discussing, the thermal radiation 
deduced above cannot be explained by the mechanism used by Gibbons and Hawking 
(1977).  

We mention without stating the details of the calculation that the result (5 .17)  with 
a factor two instead of four is also obtained, when the same problem is calculated in 
the framework of a Klein-Gordon theory if the passage through = 0 is performed 
analytically as in $ 2 .  
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6. Development in time of the creation process 

We are treating the process of particle creation by means of an ‘in-out formalism’ 
which leads to rigorous results only in the asymptotic region of time-like infinity t + CO. 

Nevertheless a detailed analysis showing when the exact Dirac solutions of (4 .14)  pass 
over to WKB solutions allows additional statements concerning the time when the 
respective modes can be interpreted as already created particles. 

The asymptotic expansion 

3T 
larg zI < - (6 .1)  

Y(V - 1 )  V(V - l ) ( ~  - 2)(v - 3 )  
~ , ( 4 = e - z ~ / ~ z ” (  1 -- + 

2 z 2  2 . 4 . ~ ~  4 

is valid for the region 

IZI >> 1 

Iz I >> I I .  
( 6 . 2 ~ )  

(6 .26 )  

It shows that the generation process has finished, i.e. that the respective particles are 
present, if the relations corresponding to (6 .2 )  are fulfilled. For our case we have 

( 6 . 3 ~ )  

(6 .3b )  

According to ( 6 . 3 ~ )  it is at about the Compton time tc and afterwards that the cosmic 
expansion has led to the creation of particles. Condition (6 .3b )  is also fulfilled for all 
k s k’ = J ( 2 b m )  = a J m .  This means that at a time t which fulfills (6 .3a ) ,  all modes 
with k s k’ have already become particles. Using (5 .17)  it follows from 

IzI >> 1 t) 77 >> ( 2 b ; ~ z ) - ’ / ~  * t >> 1 / 4 m  = itc 
IzI >>IvI * 9 >> k 2 / ( 2 b m ) 3 / 2  t) t >> k 4 / 4 m 3 a 4 .  

=-(bm)’l2{ 1 erf [ ( z ) 1 / 2 k ’ ]  2k’ 
2T3  bm 

(where erf denotes the error function) that already 99% of the total number of 
particles are generated when equation ( 6 . 3 ~ )  is fulfilled. We may therefore conclude 
that 99% of the particles created all together are created at about the Compton time. 
Present day theories about the early stages of the universe lead to a radiation- 
dominated universe up to t = l o 4  years. Our choice of the expansion law R - t1’2 
(radiation-filled universe) for the study of particle creation seems therefore to be 
justified. 

There remains the question if the particles are created with a relativistic momen- 
tum p = k / R .  For k S k’ we have 

p 2 / m 2  = k 2 / m 2 a 2 t  s tc / t .  ( 6 .5 )  
For these 99% of the particles we may, according to ( 6 . 3 ~ )  at least, conclude that they 
are not created ultra-relativistically. The same applies for the remaining 1 O/O which are 
created with high values of k but because of (6 .36 )  at later times 1. This result is 
plausible because our field equation becomes conformally invariant for m + 0. 

We compare at Compton time t = tc the characteristic properties of the gas of 
created particles with the radiation content of the universe by using Einstein’s equa- 
tion. Assuming that the particles are created with electron rest mass m, the respective 
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energy density p obtained from (5.18) and the energy density of the cosmic radiation 
p r  are related by 

From this result it seems reasonable to neglect the back reaction of the created 
particles on the metric during the creation. The particle temperature T of (5.21) at 
Compton time is related to the temperature of the radiation content of the universe 
according to 

Because of (5.18) the number of particles created per Compton volume A ;  is at 
Compton time tc 

P O t a '  1 1 1 
m 3 - 5 / 2 - - -  2 n 175' 

7. Energy density and pressure of the created particles 

In the following we discuss energy density and pressure of the created particles. For 
the space-time of 0 1 using the convention of 0 2 the energy-momentum tensor T a p  of 
the Dirac field is given (we omit details of the calculation, = R-3/2@) by 

i 1  
2 R  Tap = - 2 ( 5 ) ~ a ~  ? a @ ( i p )  - +(la6 :))Y* (7.1) 

We pass over the asymptotic behaviour (77 + C O )  of the energy-momentum tensor 
in second quantisation by 

where : TZUpf : is obtained by inserting (5.16) into (7.1) and normal ordering with 
regard to the out-operators. 

By explicit calculations, again we omit the details, it can be shown that the 
off-diagonal elements of B a p  vanish and that 

@ 1 ' = @  2 2 ' 0  3 3, (7.3) 

This is plausible because of the symmetry of the space-time and the corresponding 
symmetry of the vacuum. The component is the energy density and -@33 is the 
isotropic pressure both as measured by the cosmic observer relative to the measured 
volume. In contrast to this, measured energy 6 and pressure p* taken per coordinate 
volume are given by 
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Using the asymptotic behaviour of (6.1) the quantities p* and p̂  explicitly take the 
form of series with respect to inverse powers of R: 

The terms proportional to even powers of R-' come from the diagonal terms of 
: TZit :, the terms proportional to odd powers of R-' result from off-diagonal terms of 
: T$ :. For bo we obtain 

Applying (5.4) and (5.14) we obtain 

Correspondingly we find 

(7.10) 

(7.11) 

Comparison of (7.11) with (7.10) leads to the following relation: 

(7.12) 2 1  
p^-2 = 3p-2. 

The remaining terms are of the form 

(7.13) 
t out t terms containing e2imt((U:?,-s) (bk,, ) ) 

and e-2im'(b?:,-s, ut::) 
p-1= 

p-1= terms containing e2im~((a~?,-s)t(bt~:)t)} 
and e-2im'(b::,-s, a;::) 

(7.14) 

Both terms oscillate with frequencies *2m in the t time. 
The equations above reflect the result of 0 5. For R + CO corresponding to q + CO 

the only remaining term is F0. It represents according to (5.18) the total rest mass per 
coordinate volume. The motion of the particles has asymptotically slowed down 
completely. The terms proportional to R-' can be interpreted as a result of the 
zitterbewegung. They vanish if averaged over times greater than some tc. In the even 
more preasymptotic phase, when the R-' terms are to be taken into account, pressure 

and density 6 - 2  of the kinetic energy per coordinate volume are related according 
to (7.12) by the thermal equation of state of a non-relativistic ideal gas. 
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Appendix: WKB theory for Dirac particles 

A . l .  Basic equations 

The generally covariant Dirac equation (2 .2 )  

may be solved using the expansion in powers of h:  
m 

= exp(i6S/h) 1 an(-i6h)", 6 = *l. ( A 4  " =o 

We decompose the spinor a. according to 

ao=fbs  

with 

Eabs = 6 

into a 'normalised' spinor bs and a real scalar f. The WKB approximation of the Dirac 
equation is formally obtained by inserting ( A . 2 )  into (A.1) and restricting to the term 
of lowest order in h .  This implies a 9 of the form 

qrKB = a. exp(iaS/h) ( ' 4 .5 )  

(Sy"Sla + m)bs = 0. ( A 4  

and a differential equation for S and bs:  

Iteration of ( A . 6 )  leads with ( 2 . 3 )  to 

s'"s~, = m 2  6 4 . 7 )  
whence we may infer that 

Sla = -pa ('4.8) 

(-4.9) Pa11sP = O s  

with future-poining 4-momentum pa. ( A . 8 )  and ( A . 7 )  imply 
3 

We insert the WKB approximation (A.5) into the Dirac current j" of (2.4) 

j" = f2&y"bs. ( A . l O )  

This current is still divergence-free in the framework of our approximation. On the 
other hand, using Gordon's decomposition of the current and again applying the WKB 
approximation, we are led to 

(A.11) 

which on the level of approximation must be divergence-free as well 

(f*Sl"),," = 0. ( A . 1 2 )  

Comparison of (A.  10) and (A.  11) yields 

pa = m&yabs. (A .  1 3 )  
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The WKB norm is given by 

(A.14) 

and agrees because of (A.lO) with the Dirac norm (2.5). For the WKB approximation 
of the energy-momentum tensor (2.6) follows the form of a perfect fluid without 
pressure 

Tap = af  2P&Y&s = am f 2  (A.15) 

Hence S denotes the sign of the energy of the respective solution. 
The equations (A.6), (A.7), (A. 12) and (A. 13) are the basic (differential) equations 

of the WKB approximation. They allow the determination of S, b and f .  We mention 
that the corresponding WKB approximation of the Klein-Gordon equation leads to 
(A.7) and (A.12) as well. Of course one may look at the equations (A.4), (A.6), (A.7), 
(A.12) and (A. 13) together with (A.5) as basic rigorous dynamical equations defining 
a new theory for spin-; particles which could be called WKB theory. Note that it does 
not have a superposition principle. The condition a WKB solution has to fulfill in order 
also to be an exact Dirac solution is 

(Y"ao>lla = 0. (A.16) 

A.2. WKB solution 

For the line-element ( l . l b )  we find as solution of (A.7) 

The corresponding solution of (A.12) is 

and the solution of (A.6) is 

where 8, s = 

1 0 

k, +ik, 
0 

1 
k, k, -ik, m m  

0 
k,+ik, -k, 
B + m R Z z  

1 9 1  1,-1 - 1 , l  -1,-1 

(A.17) 

(A. 18) 

(A.19) 

l? = J ( m  2R + k'). (A.20) 
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This solution is normalised to unity. We mention that for the domain of negative 
values of 7 the arguments of § 2 apply according to (A.10) as well to b :  

= KR 3 /2 .  (A.21) 

The system of WKB solutions 

9::; =fkbb;k,s exP( is?) (A.22) 

is complete and allows a decomposition of any normalised Dirac solution according to 

qDirac(x) = C d3k ( c l r , S ( ~  )?F&(x)  + d L ( 7  ) q Y % S ( x ) )  (A.23) 
s I, 

with 

(A.24) 

A.3. WKB solutions as energy eigenfunctions 

It can be shown that the 9::; of (A.22) are energy eigenfunctions of the Dirac energy 
operator of (2.19) corresponding to the energy eigenvalues 

e, = SE, E, =&//RI.  (A.25) 

By this the energy eigenfunctions obtain a dynamical interpretation. Moreover using 
the decomposition (A.23) it follows with (2.18) that 

I, TapuQup d 3 V  = d 3 k E ~ ; k , s ( c ~ , s c ~ , s  -dk,sdz,s) (A.26) 

which means that the WKB solutions diagonalise the field-theoretical energy expres- 
sion. We therefore have that for the space-time in question the particle concept which 
is based on the diagonalisation of the energy-momentum tensor completely agrees 
with that of $ 3  based on WKB solutions. 

? I, 

A.4. WKB solutions as exact solutions of the Dirac equation 

We refer again to the space-time (1.lb) and the WKB solution with (A.17), (A.18) and 
(A.19). For 77 + i 0 0  it can easily be seen that qwKB fulfills the condition (A.16) and is 
therefore also an exact solution of the Dirac equation. For finite 7 the validity of 
condition (A.16) would imply that 

R-5’2~(4)(R 3’2fb)14 = 0 (A.27) 

with f and b of (A.18) and (A.19). One component of (A.27), because of (A.18) and 
(A.19), is of the form 

mR 1 / 2  

~ - 5 / 2 [  ( I  + ( m 2 R 2 + k  2 ) 1/2) ],,=0. (A.28) 

For an expansion law 

R - q q ,  o<q<co (A.29) 
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and taking k # 0 equation (A.28) is fulfilled only for 77 + *W. Accordingly for all finite 
values of R and especially for 77 = 0 the WKB solutions do not obey the Dirac equation 
rigorously. 
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